Nets Enriched over Closed Monoidal Structures
نویسندگان
چکیده
We show how the firing rule of Petri nets relies on a residuation operation for the commutative monoid of natural numbers. On that basis we introduce closed monoidal structures which are residuated monoids. We identify a class of closed monoidal structures (associated with a family of idempotent group dioids) for which one can mimic the token game of Petri nets to define the behaviour of these generalized Petri nets whose flow relations and place contents are valued in the closed monoidal structure.
منابع مشابه
The symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملRELATIVE SYMMETRIC MONOIDAL CLOSED CATEGORIES I: AUTOENRICHMENT AND CHANGE OF BASE Dedicated to G. M. Kelly on the occasion of the fiftieth anniversary of the La Jolla Conference on Categorical Algebra, 1965
Symmetric monoidal closed categories may be related to one another not only by the functors between them but also by enrichment of one in another, and it was known to G. M. Kelly in the 1960s that there is a very close connection between these phenomena. In this first part of a two-part series on this subject, we show that the assignment to each symmetric monoidal closed category V its associat...
متن کاملGraphical Presentations of Symmetric Monoidal Closed Theories
We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
متن کاملTwo Cotensors in One: Presentations of Algebraic Theories for Local State and Fresh Names
Various situations in computer science call for categories that support both cartesian closed and monoidal closed structure. Such situations include (i) models of local state, where the monoidal product describes disjointness of memory, and (ii) treatment of fresh names, as required in models of the π-calculus. I propose a technique to embed the two closed structures into one single structure. ...
متن کاملGraphical Presentations of Symmetric Monoidal
We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signature augmented with equations, and describe the classifying categories of such theories in terms of proof nets.
متن کامل